
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 





 







Impact of Nonparametric Density Estimation
on the Approximation of the G=G=1 Queue
by the M=G=1 One

Aïcha Bareche and Djamil Aïssani

Abstract In this paper, we show the interest of nonparametric boundary density
estimation to evaluate a numerical approximation of G=G=1 and M=G=1 queueing
systems using the strong stability approach when the general arrivals law G in the
G=G=1 system is unknown. A numerical example is provided to support the results.
We give a proximity error between the arrival distributions and an approximation
error on the stationary distributions of the quoted systems.

1 Introduction

Because of the complexity of some queueing models, analytic results are generally
difficult to obtain or are not very exploitable in practice. That is the case, for
example, in the G=G=1 queueing system, where the Laplace transform or the
generating function of the waiting time distribution is not available in a closed form
[20]. Indeed, when a practical study is performed in queueing theory, one often
replaces a real system by another one which is close to it in some sense but simpler
in structure and/or components. The queueing model so constructed represents an
idealization of the real queueing one, and hence the “stability” problem arises.

One of the stability methods is the strong stability approach [2, 19] which
has been developed in the beginning of the 1980s. It can be used to investigate
the ergodicity and stability of the stationary and non-stationary characteristics of
Markov chains. In contrast to other methods, the strong stability approach supposes
that the perturbation of the transition kernel is small with respect to a certain norm.
Such a stringent condition allows us to obtain better estimates on the characteristics
of the perturbed chain. Besides the ability to make qualitative analysis of some
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complex systems, one importance particularity of the strong stability method is the
possibility to obtain stability inequalities with an exact computation of the constants.

The applicability of this approach is well proved and documented in various
situations and for different proposals. In particular, it has been applied to several
queueing models [1, 10, 15, 17, 23] and inventory models [22].

Note that the first attempt to “measure” the performance of the strong stability
method has been used in practice, and has been particularly applied to a simple
system of queues [12, 13]. The approach proposed is based on the classical
approximation method where the authors perform the numerical proximity of the
stationary distribution of an Hyp=M=1 (respectively M=Cox2=1) system by the
one of an M=M=1 system when applying the strong stability method. For the first
time, Bareche and Aïssani [5] specify an approximation error on the stationary
distributions of the G=M=1 (resp. M=G=1) and M=M=1 systems when the general
law of arrivals (resp. service times) G is unknown and its density function is
estimated by using the kernel density method. In [11], the authors use the discrete
event simulation approach and the Student test to measure the performance of the
strong stability method through simple numerical examples for a concrete case of
queueing systems (the G=M=1 queue after perturbation of the service law [9], and
the M=G=1 limit model for high retrial intensities (which is the classical M=G=1

system) after perturbation of the retrials parameter [10]). The same idea has been
already investigated for an approximation analysis of the classical G=G=1 queue
when the general law of service is unknown and must be estimated by different
statistical methods, pointing out particularly to the impact of those taking into
account the correction of boundary effects [6], see also the recent work of [7]
and [8]. For example, in the latter work [8], besides of showing the interest of
combining nonparametric methods with the strong stability principle for the study
of the M=G=1 system, we also pointed out the importance of using the Student
test to provide confidence intervals for the difference between the corresponding
characteristics of the two considered queueing systems for the aim of comparing
them (i.e., comparison of their characteristics).

Indeed, note that in practice all model parameters are imprecisely known because
they are obtained by means of statistical methods. In this sense, our contribution
concerns one aspect which is of some practical interest and has not been sufficiently
studied in the literature; for instance, when a distribution governing a queueing
system is unknown and we resort to nonparametric methods to estimate its density
function. Besides, as the strong stability method assumes that the perturbation is
small, then we suppose that the arrivals law of the G=G=1 system is close to the
exponential one with parameter �. This permits us to consider the problem of
boundary bias correction [14, 16, 25] when performing nonparametric estimation
of the unknown density of the law G, since the exponential law is defined on the
positive real line.

It is why we use, in this paper, the tools of nonparametric density estimation to
approximate the complex G=G=1 system by the simpler M=G=1 one, on the basis of
the theoretical results addressed in [3] involving the strong stability of the M=G=1

system. When the distribution of arrivals is general but close to the exponential
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distribution, it is possible to approximate the characteristics of the G=G=1 system by
those of the M=G=1 one, if we prove the fact of stability (see [2]). This substitution
of characteristics is not justified without a prior estimation of the corresponding
approximation error. This gives rise to the following question: Is it possible to
precise the error of the proximity between the two systems?

Note that unlike [5] where kernel density estimation was used for the study of the
strong stability of M=M=1 system, we consider here two new aspects. The first one
concerns the model motivation: in queueing theory, there exist explicit formulas
to determine some performance measures of the M=G=1 system. Unfortunately,
for the G=G=1 system, these exact formulas are not known. So, if we suppose
that the G=G=1 system is close to the M=G=1 one, then we can use the formulas
obtained for the M=G=1 system to approximate the G=G=1 system characteristics.
The second point deals with the use of a new class of nonparametric density
estimation to remove boundary effects. This is the class of flexible estimators, for
instance asymmetric kernels and smoothed histograms. Note also that unlike [6]
where the perturbation concerns the service duration, we perturb the arrival flux.

This article is organized as follows: In Sect. 2, we describe the considered
queueing models and we present briefly the strong stability of the M=G=1 system.
In Sect. 3, we first provide a short review of boundary bias correction techniques in
nonparametric density estimation, then we give the main results of this paper which
are illustrated by a numerical case study based on simulation results.

2 Approximating G=G=1 Queue by the M=G=1 One Using
Strong Stability Approach

2.1 Description of the Models

Consider a G=G=1 .FIFO; 1/ queueing system with general service times distri-
bution H and general inter-arrival times probability distribution G. The following
notations are used: Tn (the arrival time of the nth customer), �n (the departure time
of the nth customer), and �n (the time till the arrival of the following customer
after �n). Let us designate by �n D �.�n C 0/ the number of customers in the
system immediately after �n. �n represents the service time of the nth customer
arriving at the system. It is proved that Xn D .�n; �n/ forms a homogeneous Markov
chain with state space IN � IRC and transition operator Q D .Qij/i;j�0, where
Qij.x; dy/ D P.�nC1 D j; �nC1 2 dy=�n D i; �n D x/ is defined by (see [3]):

Qij D

8
ˆ̂
<

ˆ̂
:

qj.dy/; if i D 0;
qj�i.x; dy/; if i � 1; j � i;
p.x; dy/; if j D i � 1; i � 1;
0; otherwise;

(1)
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where

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

qj.dy/ D R
P.Tj � u < TjC1; TjC1 � u 2 dy/dH.u/I

qj.x; dy/ D
1R
x

P.Tj � u � x < TjC1; TjC1 � .u � x/ 2 dy/dH.u/I

p.x; dy/ D
xR

0

P.x � u 2 dy/dH.u/:

Let us also consider an M=G=1 .FIFO; 1/ system with exponential inter-arrivals
distribution, E�, with parameter � and take the same service times distribution than
the G=G=1 one. We introduce the corresponding following notations: NTn, N�n, N�n,
N�n D N�. N�n �0/ and �n defined as above. The transition operator NQ D � NQij

�

i;j>0
of the

corresponding Markov chain NXn in the M=G=1 system has the same form as in (1),
where

8

<̂

:̂

qj.dy/ D pjE�.dy/; qj.x; dy/ D pj.x/E�.dy/; p.x; dy/ D p.x; dy/I
pj D R

exp.��u/
.�u/j

jŠ dH.u/I
pj.x/ D R 1

x exp.��.u � x//
.�.u�x//j

jŠ dH.u/:

Let us suppose that the arrival flow of the G=G=1 system is close to the Poisson
one. This proximity is then characterized by the metric:

w� D w�.G; E�/ D
Z

'�.t/jG � E�j.dt/; (2)

where '� is a weight function and jaj designates the variation of the measure a. We
take '�.t/ D eıt, with ı > 0. In addition, we use the following notations:

�
E� D R

'�.t/E�.dt/;
G� D R

'�.t/G.dt/;

w0 D w0.G; E�/ D
Z

jG � E�j.dt/: (3)

2.2 Strong Stability Criterion

For a general framework on the strong stability method, the reader is referred to
[2, 19]. However, it is interesting to recall the following basic definition.

Definition 1 (See [2, 19]) The Markov chain X with transition kernel P and
invariant measure � is said to be �-strongly stable with respect to the norm k:k�

(defined for each measure ˛ as follows: k˛k� D P

j�0

�.j/j˛jj), if kPk� < 1 and



Nonparametric Estimation for Approximating G=G=1 Queue 119

each stochastic kernel Q in some neighborhood fQ W kQ � Pk� < 	g has a unique
invariant measure 
 D 
.Q/ and k� � 
k� ! 0 as kQ � Pk� ! 0.

2.3 Strong Stability Bounds

The following theorem determines the v-strong stability conditions of the M=G=1

system after a small perturbation of the arrivals law. It also gives the estimates of
the deviations of both the transition kernels and the stationary distributions.

Theorem 1 ([3]) Suppose that in the M=G=1 system, the following ergodicity
condition holds:

(a) � E.�/ < 1I (b) 9a > 0 W E.ea� / D R
eaudH.u/ < 1:

Suppose also that E� < 1 and ˇ0 D sup.ˇ W H�.� � �ˇ/ < ˇ/, where H� is
the Laplace transform of the probability density of the service times. Then, for all
ˇ such that 1 < ˇ < ˇ0, the Markov chain Xn is v-strongly stable for the function
v.n; t/ D ˇnŒexp.�˛t/ C c�1'�.t/�, where:

˛ > 0; c D ˇE�

1 � �
; and � D H�.� � �ˇ/ C ˇ

2ˇ
< 1:

In addition, if G� < 1, and w0 � .ˇ0�ˇ/

ˇ2
0

, then we have the margin between the

transition operators:

kQ � Qkv � w�.1 C ˇ/ C w0G�.1 C �ˇ/
ˇ4

0

.ˇ0 � ˇ/2
:

Moreover, if the general distribution of arrivals G is such that:

w�.G; E�/ � 1 � �

2c0.1 C c/
.1 C ˇ C c1/

�1;

w0.G; E�/ � .ˇ0 � ˇ/

ˇ2
0

;

we obtain the deviation between the stationary distributions � and N� associated,
respectively, to the Markov chains Xn and NXn, given by:

Er WD k� � �k � 2Œ.1 C ˇ/w� C c1w0�c0c2.1 C c/; (4)

where c0; c1; c2 are defined as follows:

c
0

0 � c0;
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where

c
0

0 D 1 C .1 � �m/.ˇ � 1/.2 � �/E�

2.1 � �/2
and m D E.�/;

c1 D G�.1 C �ˇ/
ˇ4

0

.ˇ0 � ˇ/2
;

c2 D .1 � �m/.ˇ � 1/.2 � �/

2.1 � �/ˇ
:

Note that the bound in formula (4) of Theorem 1 involves the computation of w�
and w0 and methods to do so will be discussed in the following.

3 Nonparametric Estimation for Approximating the G=G=1

System by the M=G=1 One

We want to apply nonparametric density estimation methods to determine the
variation distances w0 and w� defined, respectively, in (2) and (3), together with
the proximity error Er defined in (4) between the stationary distributions of the
G=G=1 and M=G=1 systems. We first give an overview of nonparametric estimation
methods which are required to compute w0 and w� measures, then we perform a
simulation study.

3.1 Nonparametric Density Estimation Methods

The most known and used nonparametric estimation method is the kernel density
estimation. If X1; : : : ; Xn is a sample coming from a random variable X with
probability density function f and distribution F, then the Parzen–Rosenblatt kernel
estimator [21, 24] of the density f .x/ for each point x 2 IR is given by:

fn.x/ D 1

nhn

nX

jD1

K

�
x � Xj

hn

�

; (5)

where K is a symmetric density function called the kernel and hn is the bandwidth.
The classical symmetric kernel estimate works well when estimating densities

with unbounded support. However, when these latter are defined on the positive real
line Œ0; 1Œ, without correction, the kernel estimates suffer from boundary effects
since they have a boundary bias (the expected value of the standard kernel estimate
at x D 0 converges to the half value of the underlying density when f is twice
continuously differentiable on its support Œ0; C1/ [14, 25]). In fact, using a fixed
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symmetric kernel is not appropriate for fitting densities with bounded supports as a
weight is given outside the support.

Several approaches for handling the boundary effects in nonparametric density
estimation have been introduced. They propose the use of estimators based on
flexible kernels (asymmetric kernels [14, 16] and smoothed histograms [14]). They
are very simple in implementation, free of boundary bias, always nonnegative, their
support matches the support of the probability density function to be estimated, and
their rate of convergence for the mean integrated squared error is O.n�4=5/.

Below, are briefly discussed the estimators which we will use in the context of
this paper.

Reflection Method

Schuster [25] suggests creating the mirror image of the data on the other side of the
boundary and then applying the estimator (5) for the set of the initial data and their
reflection. f .x/ is then estimated, for x � 0, as follows:

Qfn.x/ D 1

nhn

nX

jD1

�

K

�
x � Xj

hn

�

C K

�
x C Xj

hn

��

: (6)

Asymmetric Gamma Kernel Estimator

Asymmetric kernels [14, 16] are defined by the form

Ofb.x/ D 1

n

nX

iD1

K.x; b/.Xi/; (7)

where b is the bandwidth and the asymmetric kernel K can be taken as a Gamma
density KG with the parameters .x=b C 1; b/ given by

KG

	 x

b
C 1; b



.t/ D tx=be�t=b

bx=bC1
 .x=b C 1/
: (8)

Smoothed Histograms

Smoothed histograms [14] are defined by the form

Ofk.x/ D k
C1X

iD0

!i;kpki.x/; (9)
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where the random weights !i;k are given by

!i;k D Fn

�
i C 1

k

�

� Fn

�
i

k

�

;

where Fn is the empiric distribution, k is the smoothing parameter, and pki.:/ can be
taken as a Poisson distribution with parameter kx,

pki.x/ D e�kx .kx/i

iŠ
; i D 0; 1; : : : (10)

3.2 Algorithm

To realize this work, we use the discrete event simulation approach [4] to simulate
the according systems and we elaborate an algorithm which follows the following
steps:

(1) Generation of a sample of size n of general arrivals distribution G with
theoretical density g.x/.

(2) Use of a nonparametric estimation method to estimate the theoretical density
function g.x/ by a function denoted in general g�

n .x/.
(3) Calculation of the mean arrival rate given by:

� D 1=
R

xdG.x/ D 1=
R

xg.x/dx D 1=
R

xg�
n .x/dx.

(4) Verification, in this case, of the strong stability conditions given in Sect. 2.3.
For calculation considerations, the variation distances w0 and w� are given,
respectively, by: w0 D R jG � E�j.dx/ D R jg�

n � e�j.x/dx and w� DR
eıxjG � E�j.dx/ D R

eıxjg�
n � e�j.x/dx, where ı > 0.

(5) Computation of the minimal error on the stationary distributions of the consid-
ered systems according to (4).

Simulation studies were performed under Matlab 7.1 environment. The Epanech-
nikov kernel [26] is used throughout for estimators involving symmetric kernels.
The bandwidth hn is chosen to minimize the criterion of the “least squares cross-
validation” [18]. The smoothing parameters b and k are chosen according to a
bandwidth selection method which leads to an asymptotically optimal window in
the sense of minimizing L1 distance [14].

3.3 Numerical Example

We consider a G=G=1 system such that the general inter-arrivals distribution G is
assumed to be a Gamma distribution with parameters ˛ D 0:7; ˇ D 2, denoted

 .0:7; 2/, with a theoretical density g.x/ and the service times distribution is Cox2
with parameters: 
1 D 3, 
2 D 10, a D 0:005.
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Fig. 1 Theoretical density g.x/ D �.0:7; 2/.x/ and estimated densities. (a) Gamma kernel and
smoothed histogram estimates; (b) Parzen-Rosenblatt and Mirror image estimates. Taken from [8].
Published with the kind permission of ©SCITEPRESS 2014. All rights reserved

Table 1 Performance measures with different estimators

g.x/ gn.x/ Qgn.x/ Ogb.x/ Ogk.x/

Mean arrival rate � 1.6874 1.5392 1.6503 1.6851 1.6840

Traffic intensity of the system �



0.1562 0.1578 0.1570 0.1564 0.1567

Variation distance w0 0.0096 0.1287 0.0114 0.0102 0.0105

Variation distance w� 0.0183 0.2536 0.0311 0.0206 0.0224

Error on stationary distributions Er 0.0356 0.0452 0.0378 0.0377

Taken from [8]. Published with the kind permission of ©SCITEPRESS 2014. All rights reserved

By generating a sample coming from the 
 .0:7; 2/ distribution, we use the
different nonparametric estimators given, respectively, in (5)–(10) to estimate the
theoretical density g.x/.

For these estimators, we take the sample size n D 200 and the number of
simulations R D 100.

Curves of the theoretical and estimated densities are illustrated in Fig. 1 (taken
from [8]). Different performance measures are listed in Table 1 (taken from [8]).

Interpretation of Results

Figure 1 shows that the use of nonparametric density estimation methods taking into
account the correction of boundary effects improves the quality of the estimation
(compared to the curve of the Parzen–Rosenblatt estimator, those of mirror image,
asymmetric Gamma kernel, and smoothed histogram estimators are closer to the
curve of the theoretical density).

We note in Table 1 that the approximation error on the stationary distributions
of the G=G=1 and M=G=1 systems was given when applying nonparametric density
estimation methods by considering the correction of boundary effects such in the
cases of using the mirror image estimator (Er D 0:0452), asymmetric Gamma
kernel estimator (Er D 0:0378), and smoothed histogram (Er D 0:0377).
In addition, these two last errors are close to the one given when using the
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theoretical density g.x/ (Er D 0:0356). But, when applying the Parzen–Rosenblatt
estimator which does not take into account the correction of boundary effects, the
approximation error Er on the stationary distributions of the quoted systems could
not be given. This shows the importance of the smallness of the proximity error of
the two corresponding arrival distributions of the considered systems, characterized
by the variation distances w0 and w�.

4 Conclusion

We use statistical techniques, for instance, nonparametric density estimation with
boundary effects considerations to measure the performance of the strong stability
method in a M=G=1 queueing system after perturbation of the arrival flow.

The obtained results show particularly the interest of nonparametric estimation
methods and the techniques of correction of boundary effects to determine the
approximation error of the stationary distributions between two queueing systems
when applying the strong stability method in order to substitute the characteristics
of a complex real system by another simpler ideal one.

Note that, in practice, all model parameters are imprecisely known because
they are obtained by means of statistical methods. That is why the strong stability
inequalities will allow us to numerically estimate the uncertainty shown during this
analysis. In our case, if one had real data, then one could apply the kernel density
method to estimate the density function. By combining the techniques of correction
of boundary effects with the calculation of the variation distance characterizing
the proximity of the quoted systems, one will be able to check if this density is
sufficiently close to that of the Poisson law (or that of the exponential law), and
apply then the strong stability method to approximate the characteristics of the real
system by those of a classical one.

A close field of some practical interest is networks of queues. Indeed, for
modeling some complex physical systems, a simple queue is not sufficient, so we
may resort to networks of queues. However, few among them have simple analytic
solutions. This is mainly due to the difficulty of studying the properties of inter-
stations fluxes. In fact, the only known exact results are those of networks having
the product form property, such as the Jackson networks. There comes the interest of
analyzing such networks by combining the strong stability aspect and the boundary
correction techniques.
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